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Abstract

In this paper, the free vibration of laminated composite cylindrical panels is solved by the meshfree (meshless)

approach. The reproducing kernel particle approximation is employed to model the two-dimensional displacement

functions. The effects of the particle distribution and the size of the domain of influence, on the convergence behavior,

are studied. This study examines in detail the effects of different boundary conditions on the frequency characteristics of

the cylindrical panels. The effects of the curvature of the cylindrical panels as well as the lamination scheme, on the

frequencies of the panels, are also investigated. The present results are verified by comparison against results available

in the open literature, with very good agreement being attained.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The vibration of cylindrical panels has been investigated by many researchers using various methods.

Leissa (1993) presented the free vibration analysis of cylindrical panels with different boundary conditions

based on the Donnell–Mushtari theory. The free vibration of a homogeneous isotropic thick cylindrical

panel subjected to a certain type of simply supported edge boundary condition was analyzed by Soldatos and

Hadjigeorgiou (1990) employing an iterative approach to solve the governing equations of three-dimensional

linear elasticity. Bardell et al. (1997) conducted a comprehensive vibration study of thin, laminated, cylin-

drically curved shell panels using the h–p version of the finite element method. The free vibration analysis of

cross-ply laminated shear deformable circular cylinders on the basis of orthogonal polynomials was pre-
sented by Soldatos (1984). The vibration of completely free composite plates and cylindrical shell panels by a
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higher-order theory based on orthogonal polynomials was provided by Messina and Soldatos (1999).

Soldatos and Messina (2001) also discussed the influence of the edge boundary conditions on the vibration

characteristics of transverse shear deformable composite open cylindrical panels having arbitrary angle-ply

lay-up. Recently, Liew et al. (2000) and Liew and Feng (2000) presented the three-dimensional elasticity
solutions to the free vibration problem of thick cylindrical and conical shell panels.

Meshless methods developed in recent years have become popular in computational mechanics and are

applied in many areas. Nagashima (1999) presented the node-by-node meshless method for structural

analysis. The element free method was provided by Ouatouati and Johnson (1999) for the modal analysis of

free vibration of beams and plates. These methods do not require the need for a mesh in the formulation, and

essentially only involve a number of nodal points. The reproducing kernel particle method (RKPM), de-

veloped by Liu et al. (1995a), is one meshless method, which takes full advantage of the concept of having no

mesh. The RKPM is similar to smooth particle hydrodynamics (see Lucy, 1977 and Monaghan, 1988) in the
sense that its formation initiates from the kernel estimate of a function. The difference is that the RKPM

modifies the kernel function through the introduction of a correction function thereby enhancing its ac-

curacy on or near the boundaries of the problem domain. As a result, the kernel function of the RKPM

achieves consistency conditions across the domain of the problem. The mathematical aspects of meshless

methods have been investigated with particular emphasis on RKPM by Liu et al. (1997) and Li and Liu

(1996). This method provides a general formulation for the construction of shape functions for meshless

computation, and has been applied in many fields by various researchers. Liu et al. (1995b) studied the

applicability of the RKPM to structural dynamics, and the large deformation analysis of nonlinear structures
was presented by Chen et al. (1996). The RKPM was also employed for modeling of human proximal femur

(Liew et al., 2002a), elasto-plasticity (Liew et al., 2002b) and large deformation problems (Liew et al., 2002c).

In order to investigate the dynamic behavior of rotating shells, Liew et al. (2002d) has proposed the har-

monic reproducing kernel particle method and showed that it can produce excellent results for this problem.

In the Ritz method, we first have to search for admissible displacement functions that satisfy different

combinations of boundary conditions, and therefore the eigen-value equations for the panels must be re-

evaluated for each boundary condition case. In the present study, we employ two-dimensional reproducing

kernel functions in the Ritz method to analyze the vibration of laminated composite cylindrical panels. In
this meshfree approach (MFA), only one shape function type needs to be chosen to describe the interior

domain. To cater for different boundary conditions, only the variational line integral (see Eqs. (33) and

(36)) need to be re-evaluated. Another purpose for the use of the reproducing kernel particle approximation

to model the two-dimensional displacement field is to overcome the deficiencies of two-dimensional har-

monic functions, which are unable to capture the bending-extension stiffness terms in laminated composite

panels. Due to the orthogonal nature of the harmonic functions, the B16 and B26 terms vanish during the

analysis, which is appropriate for general cross-ply laminates, but incorrectly reflects the stiffness charac-

teristics in angle-ply laminates. The present method is verified by comparing present results with those
available in open literature.

2. Meshless formulation for panels

2.1. Energy formulation for the cylindrical panels

The cylindrical panel considered is as shown in Fig. 1a, where a coordinate system ðx; h; zÞ is fixed on the

middle surface of the panel. This panel is considered to be thin and of length L, radius R and thickness h

bounded along its edges by the lines x ¼ 0, x ¼ L, h ¼ 0 and h ¼ h0. The displacements of the panel in the

x-, h-, and z-directions are denoted by u, v and w respectively. The kinetic energy for the cylindrical panels
can be expressed as
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T ¼ 1

2
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Z L

0

Z h0

0

½ _uu2 þ _vv2 þ _ww2�Rdhdx ð1Þ

where the three terms are due to contributions from the linear velocities in the x-, h-, and z-directions,
respectively. The strain energy of the shell is given by
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1
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eT½S�eRdhdx ð2Þ

where eT and ½S� are the strain vector and stiffness matrix, respectively, and eT can be defined as

eT ¼ f e1 e2 c j1 j2 2s g ð3Þ
where the middle surface strains, e1, e2 and c, and the middle surface curvatures, j1, j2 and s, are defined

according to Love�s thin shell theory
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and ½S� is given by

½S� ¼

A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26
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(b)

Fig. 1. (a) Coordinate system of the cylindrical panel. (b) Cross-sectional view of the laminated cylindrical panel.
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where the extensional (Aij), coupling (Bij) and bending (Dij) stiffnesses, are defined as

ðAij;Bij;DijÞ ¼
Z h=2

	h=2
Qijð1; z; z2Þdz ð6Þ

and for a panel composed of different layers of orthotropic materials, the stiffnesses can be defined as

Aij ¼
XNl

k¼1

Q
k
ijðhk 	 hkþ1Þ Bij ¼

1

2

XNl

k¼1

Q
k
ijðh2k 	 h2kþ1Þ Dij ¼

1

3

XNl

k¼1

Q
k
ijðh3k 	 h3kþ1Þ ð7Þ

where hk and hkþ1 denote the distances from the panel reference surface to the outer and inner surfaces of

the kth layer, respectively, as shown in Fig. 1b. Nl denotes the total number of layers in the laminated panel

and Q
k
ij is the transformed reduced stiffness matrix for the kth layer defined as

½Q� ¼ ½T �	1½Q�½T �	T ð8Þ

where ½T � is the transformation matrix for the principle material coordinates and the panel�s coordinates,
and is defined as

½T � ¼
cos2 a sin2 a 2 cos a sin a
sin2 a cos2 a 	2 cos a sin a

	 cos a sin a cos a sin a cos2 a 	 sin2 a

2
4

3
5 ð9Þ

where a is the angular orientation of the fibres and ½Q� is the reduced stiffness matrix defined as

½Q� ¼
Q11 Q12 0
Q12 Q22 0

0 0 Q66

2
4

3
5 ð10Þ

The material constants in the reduced stiffness matrix [Q] are given as

Q11 ¼
E11

1	 m12m21
Q12 ¼

m12E22

1	 m12m21
Q22 ¼

E22

1	 m12m21
Q66 ¼ G12 ð11Þ

where E11 and E22 are the elastic moduli in the principle material coordinates, G12 is the shear modulus and
m12 and m21 are Poisson�s ratio. The total energy functional of the panel is thus

Ct ¼ T 	 Ue ð12Þ

2.2. Two-dimensional reproducing kernel particle shape functions and their derivatives for cylindrical panels

The discrete displacement approximations for shell panels take the form

uðx; hÞ ¼
XNP

I¼1

WIðx; hÞuIe
ixt vðx; hÞ ¼

XNP

I¼1

WIðx; hÞvIeixt wðx; hÞ ¼
XNP

I¼1

WIðx; hÞwIe
ixt ð13Þ

where NP is the total number of particles and WIðx; hÞ�s are the shape functions of displacements u, v, and w.
The 2D shape function is expressed as

WIðx; x	 xIÞ ¼ Cðx; x	 xIÞUaðx	 xIÞ ð14Þ

where Cðx; x	 xIÞ is the correction function and Uaðx	 xIÞ is the weight function. The correction function

Cðx;x	 xIÞ is described as
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Cðx; x	 xIÞ ¼ HTðx	 xIÞbðxÞ
bðxÞ ¼ ½b0ðx; hÞ; b1ðx; hÞ; b2ðx; hÞ; b3ðx; hÞ; b4ðx; hÞ; b5ðx; hÞ�T

Hðx	 xIÞ ¼ ½1; x	 xI ; h 	 hI ; ðx	 xIÞðh 	 hIÞ; ðx	 xIÞ2; ðh 	 hIÞ2�T
ð15Þ

H is a vector of quadratic basis and biðx; hÞ�s are functions of x and h which are to be determined. Thus, the

shape function can be written as

WIðxÞ ¼ bTðxÞHðx	 xIÞUaðx	 xIÞ ð16Þ
Eq. (16) can be rewritten as

WIðxÞ ¼ bTðxÞBIðx	 xIÞ ð17Þ
where

bðxÞ ¼ M	1ðxÞHð0Þ
BIðx	 xIÞ ¼ Hðx	 xIÞUaðx	 xIÞ

ð18Þ

and the moment matrix M is a function of x while Hð0Þ is a constant vector. The expressions of M and

Hð0Þ are given by

MðxÞ ¼
XNP

I¼1

Hðx	 xIÞHTðx	 xÞUaðx	 xIÞ ð19Þ

Hð0Þ ¼ ½1; 0; 0; 0; 0; 0� ð20Þ
The shape function can therefore be expressed as

WIðxÞ ¼ HTð0ÞM	1ðxÞHðx	 xIÞUaðx	 xIÞ ð21Þ
For this thin shell problem, the first and second derivatives of the shape function need to be determined. Eq.
(18) can be rewritten as

MðxÞbðxÞ ¼ Hð0Þ ð22Þ
The vector bðxÞ can be determined using LU decomposition of the matrix MðxÞ followed by backward

substitution. The derivatives of bðxÞ can be obtained similarly. Taking the derivative of Eq. (22), we have

M ;xðxÞbðxÞ þMðxÞb;xðxÞ ¼ H ;xð0Þ ð23Þ

which can be rearranged as

MðxÞb;xðxÞ ¼ H ;xð0Þ 	M ;xðxÞbðxÞ ð24Þ

It can be seen that the first derivative of bðxÞ can be formulated using the LU decomposition procedure

again. The second derivative of bðxÞ can be determined by taking derivative of Eq. (24) and using the same
LU decomposition procedure. The first derivative of the shape function can be obtained by taking the

derivative of Eq. (17)

WI;xðxÞ ¼ bT;xðxÞBIðx	 xIÞ þ bTðxÞBI ;xðx	 xIÞ ð25Þ

and the second derivative of the shape function can be calculated again by taking derivative of Eq. (25)

WI;xxðxÞ ¼ bT;xxðxÞBIðx	 xIÞ þ 2bT;xðxÞBI ;xðx	 xIÞ þ bTðxÞBI ;xxðx	 xIÞ ð26Þ

In this work, the cubic spline function is chosen as the weight function. Thus for this two-dimensional

problem, the shape function is expressed by
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uðx; hÞ ¼ /xðxÞ 
 /hðhÞ ð27Þ
where

/zðzIÞ ¼
2
3
	 4z2I þ 4z3I for 06 jzI j6 1

2
4
3
	 4zI þ 4z2I 	 4

3
z3I for 1

2
6 jzI j6 1

0 otherwise

8<
:

9=
; zI ¼

ðx	 xIÞ
d

ð28Þ

where the dilatation parameter, d, is the size of the support. At a node, the size of the domain of influence is

calculated by

dI ¼ dmaxaI ð29Þ
where dmax is a scaling factor which ranges from 2.0 to 4.0. The distance aI is determined by searching for

enough nodes to avoid singularity of the matrix M.

In order to compute the derivatives of the shape function, it is necessary to determine the derivatives of

the weight function. The first and second derivatives of the weight function can be easily obtained using the

chain rule

d/
dx

¼ d/
dz

dz
dx

¼
ð	8zI þ 12z2I Þsignðx	 xIÞ for 06 jzI j6 1

2

ð	4þ 8zI 	 4z2I Þsignðx	 xIÞ for 1
2
6 jzI j6 1

0 otherwise

8<
:

9=
; ð30Þ

d2/
dx2

¼ d2/
dz2

dz
dx

� �2

¼
ð	8þ 24zIÞ for 06 jzI j6 1

2

ð8	 8zIÞ for 1
2
6 jzI j6 1

0 otherwise

8<
:

9=
; ð31Þ

It is noted that the first and second derivatives of the weight function are continuous over the entire do-

main.

2.3. Matrix equation for panels

It is necessary to correctly enforce the different boundary conditions in order to accurately solve the

problem. There are several approaches to enforce essential boundary conditions in meshless methods, such
as the Lagrange multiplier approach, modified variational principles, etc. In the present work, the penalty

method is utilized to implement essential boundary conditions. The penalty formulation is developed as

follows:

2.3.1. Simply supported boundary conditions

For the domain bounded by lu, the displacement boundary condition is

u ¼ �uu on lu ð32Þ
in which �uu is the prescribed displacement on the displacement boundary lu. The variational form is given by

C�uu ¼
a
2

Z
lu

ðu	 �uuÞTðu	 �uuÞdl ð33Þ

where a is the penalty parameter taken as 103E11, with E11 being the elastic modulus of the shell in the

principal coordinate direction.

2.3.2. Clamped boundary conditions

In the clamped case, for the domain bounded by lu, besides the boundary condition described by Eq.

(33), the rotation boundary condition is also included
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b ¼ �bb on lu ð34Þ

where

b ¼ dw
dx

ð35Þ

and �bb is the prescribed rotation on the boundary. The variational form due to the rotation is expressed as

C�bb ¼ a
2

Z
lu

ðb 	 �bbÞTðb 	 �bbÞdl ð36Þ

Therefore, the variational form due to the boundary conditions can be expressed as

CB ¼ C�uu þ C�bb ð37Þ

and the total energy functional for this problem is thus

C ¼ Ct þ CB ð38Þ

Substituting the displacement functions of Eq. (13) into the total energy functional of Eq. (38) and applying

the Rayleigh–Ritz minimization procedure

oC
oD

¼ 0; D ¼ uI ; vI ;wI I ¼ 1; 2; . . . ;NP ð39Þ

From Eqs. (38) and (39), applying Hamilton�s principle, the following eigen-equation for the panels can be

derived

ðeKK 	 x2 eMM Þûu ¼ 0 ð40Þ
where

eKK ¼ K	1KK	T ð41Þ

eMM ¼ K	1MK	T ð42Þ

ûu ¼ ½ûu1; v̂v1; ŵw1; ûu2; v̂v2; ŵw2; . . . ; ûuNP; v̂vNP; ŵwNP� ð43Þ
and

K ¼ Ke þ KB1 þ KB2 ð44Þ
Ke is the stiffness matrices due to the strain, while KB1 and KB2 are stiffnesses due to the boundary con-

ditions.

KIJ ¼ WIðxJÞI ; I is the identity matrix ð45Þ

Ke
IJ ¼ R

Z L

0

Z h0

0

BeT
I ½S�Be

J dxdh ð46Þ

KB1
IJ ¼ aqhR

Z
CU

B1BT

I BB
J dl

�
þ

Z
CU

B1B
I �uudl

�
ð47Þ

KB2
IJ ¼ aqhR

Z
CU

B2BT

I BB
J dl

�
þ

Z
CU

B2B
I
�bbdl

�
ð48Þ
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M ¼ qhR
Z L

0

Z h0

0

MT
I MJ dxdh ð49Þ
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B1B
I ¼

WI 0 0

0 WI 0

0 0 WI

2
4

3
5 B2B

I ¼
WI ;x 0 0

0 WI ;x 0

0 0 WI;x

2
4

3
5 ð51Þ

M ¼
WI 0 0

0 WI 0

0 0 WI

2
4

3
5 ð52Þ

3. Numerical results and discussion

3.1. Comparison and convergence studies

In order to verify the present approach and to examine the accuracy of the method, numerical results are
compared with those existing in open literature. Table 1 shows comparisons of frequency parameter
�xx ¼ xL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð1þ mÞ=E

p
for isotropic simply supported circular cylindrical panels with solutions given by

Soldatos and Hadjigeorgiou, 1990. The results tabulated in Table 1 provide an insight to the convergence

characteristics of the present methodology when the support sizes increase from 2.5 to 3.5 and the number

of particles increase from 8� 8 to 14� 14. It can be seen that the fundamental frequencies converge, in a

monotonic manner, with the increases of the support size and the number of nodes. It is also observed that

the good agreement is obtained between the present results with those given by Soldatos and Hadjigeorgiou

(1990) based on the Sanders (SDST) and Fl€uugge (CST) theories, for thin panels (h=b6 0:1). For relatively
thick cylindrical panels (h=bP 0:2), the present results are higher than those based on the Sanders (SDST)

and lower than those obtained through Fl€uugge (CST), which are considered to be less accurate. For a two-

layer ½90�=0�� simply supported circular cylindrical panel, the present results of frequency parameter

x̂x ¼ xs2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q=E2h2

p
are compared in Table 2 with those results provided by Bardell et al. (1997), Soldatos

(1984) and Bercin (1996). It is observed that the convergent results can be achieved using relatively less

nodes (10� 10) and smaller support size (d ¼ 2:5). Table 3 shows comparisons of the first four frequency

parameter ~xx ¼ xL2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12qð1	 m2Þ=Eh2

p
for a free isotropic cylindrical panel, with results provided by Leissa

and Narita (1984) and Messina and Soldatos (1999). The maximum discrepancies for the four modes are
0.58%, 1.42%, 1.07% and 0.97%, respectively. The maximum discrepancies for the four modes between the
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Table 1

Comparison of frequency parameter �xx ¼ xL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð1þ mÞ=E

p
for an isotropic simply supported circular cylindrical panel (L=b ¼ 1, m ¼ 0:3, m ¼ n ¼ 1)

h=b h0 Soldatos and Hadjigeorgiou

(1990)

Present meshless

Fl€uugge CST Sanders SDST d ¼ 2:5 d ¼ 3:0 d ¼ 3:5

8� 8 10� 10 12� 12 14� 14 8� 8 10� 10 12� 12 14� 14 8� 8 10� 10 12� 12 14� 14

0.1 30� 0.7207 0.7001 0.7149 0.7154 0.7158 0.7161 0.7099 0.7119 0.7132 0.7139 0.7094 0.7120 0.7135 0.7144

60� 0.8262 0.8096 0.8101 0.8131 0.8149 0.8162 0.8033 0.8083 0.8113 0.8132 0.7993 0.8056 0.8094 0.8118

90� 0.9696 0.9575 0.9435 0.9491 0.9525 0.9546 0.9347 0.9428 0.9476 0.9507 0.9271 0.9496 0.9433 0.9474

0.2 30� 1.3448 1.2033 1.3357 1.3349 1.3348 1.3348 1.3269 1.3289 1.3302 1.3311 1.3278 1.3307 1.3321 1.3330

60� 1.3118 1.1979 1.2860 1.2873 1.2882 1.2889 1.2763 1.2806 1.2831 1.2848 1.2744 1.2800 1.2832 1.2852

90� 1.3015 1.2199 1.2586 1.2625 1.2649 1.2665 1.2476 1.2548 1.2589 1.2617 1.2420 1.2511 1.2565 1.2601

0.3 30� 1.9803 1.5947 1.9595 1.9580 1.9575 1.9574 1.9471 1.9495 1.9510 1.9521 1.9489 1.9525 1.9542 1.9552

60� 1.8362 1.5281 1.7824 1.7827 1.7831 1.7835 1.7701 1.7742 1.7767 1.7783 1.7692 1.7749 1.7779 1.7798

90� 1.6937 1.4699 1.6138 1.6164 1.6181 1.6194 1.6007 1.6073 1.6113 1.6138 1.5963 1.6149 1.6100 1.6133

Table 2

Comparison of frequency parameter x̂x ¼ xs2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q=E2h2

p
for a two-layer ½90�=0�� simply supported circular cylindrical panel (s=R ¼ 0:5, R=h ¼ 40)

L=s Bardell et al.

(1997)

Soldatos

(1984)

Bercin

(1996)

Present meshless

d ¼ 2:5 d ¼ 3:0 d ¼ 3:5

8� 8 10� 10 12� 12 14� 14 8� 8 10� 10 12� 12 14� 14 8� 8 10� 10 12� 12 14� 14

1 11.69 11.84 12.01 11.4915 11.4731 11.464 11.4585 11.4895 11.4608 11.4488 11.4435 11.5192 11.4786 11.4621 11.4545

2 7.33 7.25 7.43 7.1727 7.1496 7.1366 7.1289 7.2485 7.1915 7.1623 7.1456 7.2926 7.2186 7.1826 7.1622

3 6.54 6.39 6.59 6.4264 6.3975 6.3809 6.3707 6.5091 6.4447 6.4112 6.3915 6.5517 6.4716 6.4317 6.4086

4 6.28 6.11 6.30 6.1866 6.1548 6.1364 6.1250 6.2537 6.1929 6.1611 6.1423 6.2856 6.2137 6.1777 6.1567

5 6.17 5.99 6.20 6.0859 6.0532 6.0341 6.0222 6.1271 6.0759 6.0489 6.0328 6.1449 6.0884 6.0594 6.0432

X
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present results and those provided by Messina and Soldatos (1999) are respectively 1.52%, 2.38%, 1.50%

and 0.13%. In Table 4, present solutions for the four-layer ½	60�=60�=60�=	 60�� free circular cylindrical

panels are compared with those provided Qatu and Leissa (1991), Messina and Soldatos (1999). It is ob-

served that the present analysis shows good convergence characteristics and agree well with results of Qatu
and Leissa (1991) and Messina and Soldatos (1999) for the first ten modes. For the free panels with different

lamination schemes ½/=	 /=/�, comparisons between the present results using various nodal distributions

and support sizes, and results of Messina and Soldatos (1999) and Qatu (1992), are tabulated in Table 5.

Both these works used in the comparison were based on the energy functional of the classical shallow shell

theory, and the present results show good agreement.

In order to study the effects of the curvature of the panel on the convergence characteristics of the

present meshfree method, some comparisons for plates which can be considered as a special case of a panel,

with 1=R ¼ 0, are performed and tabulated in Tables 6 and 7. For a free isotropic square plate, Table 6
compares the first four frequency parameters ~xx ¼ xL2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12qð1	 m2Þ=Eh2

p
with corresponding results of

Leissa and Narita (1984) and Messina and Soldatos (1999), who employed Ritz method to predict the

frequencies. Apart from good agreement, stable convergence characteristics are also observed. For the free

laminated square plates with different lamination schemes ½/=	 /=/�, Table 7 shows the comparison of the

frequency parameters x̂x ¼ xL2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q=E1h2

p
corresponding parameters predicted by Qatu (1991) and Messina

and Soldatos (1999). Generally good agreement is observed. However, there exists some relatively large

discrepancy between the results of Qatu (1991) and Messina and Soldatos (1999), for the seventh and eighth

modes for the case where the lamination scheme is ½0=	 0=0�. Messina and Soldatos (1999) attributed this
to possible numerical instabilities in the methods applied by Qatu (1991). However, the present method-

ology provides similar results with those given by Qatu (1991), and the present authors thus believe the

disagreement is possibly caused by other reasons. From the comparisons documented in Tables 6 and 7, it is

observed that the curvature of the panel does not affect the convergence characteristics of the present

approach.

Figs. 2–5 show the effects of particle distribution and the size of the domain of influence on the con-

vergence characteristics of the fundamental frequencies, of a free isotropic square panel. A frequency

parameter of x
 ¼ xL2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12qð1	 m2Þ=Eh2

p
is used here. Monotonic convergence behavior is observed. The

corresponding numerical results for four modes are tabulated in Table 8. The number of points varies from

6� 6 to 14� 14, and the size of the domain of influence varies from 2.0 to 3.5. It can be seen from the Table

8 that for smaller sizes of the domain of influence, more points are required to obtain the converged results.

Similarly, when the particle distribution is relatively dilute, convergence can still be achieved by increasing

the size of the domain of influence. In the present work, for the sake of computational efficiency, a larger

size of the domain of influence with lower number of particles is selected because less particles translates to

reduced sizes of the characteristic matrices. For this particular case, the results can be considered converged

when using 10� 10 particles with the size of domain of influence being 3.5.
The variation of the frequencies, for the modes 1 and 3, of a simply supported isotropic square panel,

with the particle distribution and the size of the domain of influence is presented in Table 9. Similar ob-

servations as those arising in Table 8 are also observed here. Further, in a relative comparison of these two

tables, it is found that the boundary conditions also affect the convergence characteristics. Results involving

free edges tend to converge faster than those involving simply supported edge conditions.

3.2. Parametric studies

The effects of the boundary conditions on the fundamental frequencies of the panels with different

lamination schemes will now be examined in detail. Figs. 6–9 show the variation of the frequencies with the

lamination scheme for simply supported (SSSS), cantilevered (CFFF), and free (FFFF) cylindrical panels
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Table 3

Comparison of frequency parameter ~xx ¼ xL2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12qð1	 m2Þ=Eh2

p
for an isotropic free circular cylindrical panel (L=R ¼ 0:5, L=h ¼ 100, L=b ¼ 1, m ¼ 0:3)

Mode Leissa and

Narita

(1984)

Messina and

Soldatos

(1999)

Present meshless

d ¼ 2:5 d ¼ 3:0 d ¼ 3:5

8� 8 10� 10 12� 12 14� 14 8� 8 10� 10 12� 12 14� 14 8� 8 10� 10 12� 12 14� 14

1 13.508 13.346 13.6325 13.5946 13.5778 13.5688 13.5889 13.5692 13.5606 13.5563 13.5684 13.5577 13.5535 13.5516

2 22.073 21.473 22.3144 22.1644 22.0913 22.0495 22.1277 22.0520 22.0131 21.9924 22.0578 22.0263 22.0093 21.9967

3 34.868 34.201 35.0995 34.9362 34.8527 34.8026 34.8694 34.7891 34.7472 34.7226 34.8056 34.7623 34.7389 34.7224

4 48.703 48.877 49.2905 49.0605 48.9575 48.9003 48.9831 48.8801 48.8350 48.8101 48.9210 48.8575 48.8284 48.8100

Table 4

Comparison of frequency parameter x̂x ¼ xL2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q=E1h2

p
for a four-layer ½	60�=60�=60�=	 60�� free circular cylindrical panel (L=R ¼ 0:5, L=h ¼ 100, L=b ¼ 1)

Material Mode Qatu and

Leissa

(1991)

Messina

and Solda-

tos (1999)

Present meshless

d ¼ 2:5 d ¼ 3:0 d ¼ 3:5

8� 8 10� 10 12� 12 14� 14 8� 8 10� 10 12� 12 14� 14 8� 8 10� 10 12� 12 14� 14

E-glass/

epoxy

1 3.2920 3.2498 3.3259 3.3137 3.3086 3.3059 3.3131 3.3068 3.3042 3.3028 3.3069 3.3036 3.3023 3.3016

2 5.7416 5.5910 5.8048 5.7669 5.7483 5.7376 5.7567 5.7373 5.7279 5.7227 5.7389 5.7311 5.7269 5.7328

3 8.5412 8.3873 8.6113 8.5648 8.5422 8.5289 8.5472 8.5265 8.5156 8.5091 8.5313 8.5195 8.5131 8.5087

4 11.114 11.137 11.2358 11.1872 11.1653 11.1529 11.1695 11.1482 11.1385 11.1330 11.1563 11.1434 11.1371 11.1331

5 12.591 12.533 12.7924 12.7221 12.6874 12.6665 12.6797 12.6543 12.6391 12.6295 12.6606 12.6428 12.6329 12.6262

6 15.696 15.328 16.2461 16.0269 15.9122 15.8412 15.8535 15.7727 15.7320 15.7066 15.8517 15.7802 15.7458 15.7243

7 18.221 17.895 18.6642 18.4844 18.3911 18.3321 18.3374 18.2696 18.2355 18.2136 18.3559 18.2848 18.2515 18.2309

8 22.058 22.072 22.6171 22.3958 22.2944 22.2350 22.2702 22.1838 22.1457 22.1228 22.2584 22.1822 22.1486 22.1292

9 22.194 22.142 22.7033 22.5076 22.4162 22.3613 22.3703 22.3089 22.2753 22.2533 22.3810 22.3099 22.2763 22.2566

10 25.871 26.036 25.9199 25.8867 25.8687 25.8556 25.8603 25.8442 25.8354 25.8298 25.8488 25.8376 25.8321 25.8284

Graphite/

epoxy

1 2.2156 2.1841 2.2538 2.2356 2.2288 2.2255 2.2369 2.2281 2.2245 2.2226 2.2283 2.2240 2.2221 2.2212

2 5.1241 4.9999 5.2097 5.1659 5.1537 5.1309 5.1517 5.1289 5.1185 5.1128 5.1273 5.1190 5.1151 5.1122

3 5.5678 5.5116 5.6521 5.6043 5.5839 5.5733 5.5931 5.5753 5.5660 5.5607 5.5757 5.5654 5.5603 5.5572

4 7.6824 7.6068 7.8552 7.7798 7.7423 7.7209 7.7471 7.7132 7.6973 7.6884 7.7160 7.6983 7.6903 7.6851

5 7.9914 7.9690 8.1808 8.1110 8.0782 8.0592 8.0774 8.0530 8.0389 8.0300 8.0547 8.0377 8.0289 8.0232

6 12.551 12.374 12.9815 12.8153 12.7325 12.6818 12.7087 12.6453 12.6116 12.5900 12.6969 12.6352 12.6047 12.5866

7 12.982 12.902 13.3493 13.1951 13.1208 13.0768 13.1016 13.0423 13.0151 12.9987 13.0787 13.0343 13.0129 12.9998

8 13.997 14.020 14.2654 14.1596 14.1061 14.0729 14.0878 14.0475 14.0258 14.0112 14.0661 14.0333 14.0165 14.0060

9 14.926 14.744 15.3684 15.1861 15.0951 15.0397 15.0567 14.9901 14.9571 14.9366 15.0341 14.9777 14.9530 14.9382

10 17.194 17.115 17.5086 17.3423 17.2584 17.2063 17.2305 17.1621 17.1284 17.1071 17.1959 17.1621 17.133 17.0983
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Table 5

Comparison of frequency parameter x̂x ¼ xL2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q=E1h2

p
for free circular cylindrical panels with graphite/epoxy layers ½/=	 /=/� (L=R ¼ 0:5, L=h ¼ 100, L=b ¼ 1)

/ Mode Qatu

(1992)

Messina and

Soldatos

(1999)

Present meshless

d ¼ 2:5 d ¼ 3:0 d ¼ 3:5

8� 8 10� 10 12� 12 14� 14 8� 8 10� 10 12� 12 14� 14 8� 8 10� 10 12� 12 14� 14

0� 1 1.488 1.470 1.4994 1.4959 1.4944 1.4935 1.4955 1.4937 1.4929 1.4925 1.4940 1.4929 1.4924 1.4921

2 1.644 1.599 1.6592 1.6489 1.6439 1.6411 1.6467 1.6413 1.6386 1.6372 1.6421 1.6398 1.6386 1.6376

3 3.448 3.388 3.4634 3.4499 3.4432 3.4391 3.4435 3.4377 3.4344 3.4324 3.4409 3.4371 3.4348 3.4330

4 4.546 4.437 4.6996 4.6382 4.6062 4.5864 4.5889 4.5667 4.5556 4.5485 4.5915 4.5708 4.5607 4.5545

5 6.432 6.317 6.5472 6.4992 6.4745 6.4585 6.4552 6.4393 6.4307 6.4247 6.4721 6.4502 6.4395 6.4328

6 8.898 8.906 9.0648 8.9937 8.9594 8.9338 8.9344 8.8947 8.8741 8.8611 8.9294 8.9048 8.8868 8.8740

30� 1 1.695 1.658 1.7276 1.7104 1.7032 1.6994 1.7119 1.7023 1.6979 1.6957 1.7036 1.6986 1.6963 1.6949

2 2.990 2.940 3.0298 3.0129 3.0048 3.0002 3.0039 2.9978 2.9948 2.9931 2.9970 2.9956 2.9945 2.9936

3 4.304 4.226 4.4315 4.3672 4.3382 4.3223 4.3400 4.3195 4.3079 4.3008 4.3289 4.3143 4.3060 4.3005

4 6.611 6.510 6.7915 6.7114 6.6715 6.6476 6.6532 6.6247 6.6114 6.6033 6.6456 6.6237 6.6136 6.6073

5 7.103 7.034 7.3237 7.2161 7.1697 7.1447 7.1702 7.1349 7.1187 7.1089 7.1465 7.1238 7.1128 7.1058

6 8.734 8.693 8.9895 8.8799 8.8296 8.8010 8.8214 8.7845 8.7665 8.7553 8.7937 8.7723 8.7607 8.7528

60� 1 1.792 1.766 1.8491 1.8184 1.8093 1.8025 1.8220 1.8078 1.8022 1.7995 1.8083 1.8020 1.7992 1.7978

2 4.683 4.639 4.8243 4.7446 4.7152 4.6972 4.7269 4.7019 4.6893 4.6822 4.7011 4.6879 4.6814 4.6776

3 5.196 5.074 5.2835 5.2398 5.2176 5.2049 5.2236 5.2019 5.1918 5.1863 5.2009 5.1931 5.1893 5.1864

4 6.880 6.844 7.1621 7.0385 6.9874 6.9558 6.9885 6.9506 6.9308 6.9189 6.9519 6.9285 6.9174 6.9102

5 7.430 7.356 7.6653 7.5606 7.5134 7.4826 7.5111 7.4701 7.4518 7.4415 7.4709 7.4538 7.4455 7.4395

6 11.05 10.95 11.5407 11.3262 11.2297 11.1763 11.2223 11.1498 11.1157 11.0952 11.1803 11.1244 11.0988 11.0836

90� 1 1.514 1.496 1.5263 1.5224 1.5224 1.5202 1.5222 1.5204 1.5197 1.5193 1.5207 1.5197 1.5193 1.5190

2 4.514 4.529 4.5578 4.5389 4.5389 4.5272 4.5329 4.5260 4.5231 4.5215 4.5304 4.5256 4.5233 4.5219

3 6.455 6.280 6.5174 6.4774 6.4576 6.4463 6.4683 6.4469 6.4366 6.4308 6.4501 6.4409 6.4360 6.4323

4 6.757 6.751 6.8585 6.8269 6.8152 6.8038 6.8055 6.7966 6.7917 6.7886 6.8034 6.7967 6.7929 6.7902

5 7.092 6.917 7.1488 7.1109 7.0933 7.0808 7.0963 7.0783 7.0691 7.0638 7.0824 7.0734 7.0687 7.0650

6 9.197 9.248 9.4156 9.3205 9.2871 9.2610 9.2782 9.2451 9.2323 9.2253 9.2837 9.2522 9.2389 9.2316
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Table 6

Comparison of frequency parameter ~xx ¼ xL2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12qð1	 m2Þ=Eh2

p
for a square isotropic plate with free edges (m ¼ 0:3)

Mode Leissa and

Narita(1984)

Messina and

Soldatos(1999)

Present meshless

d ¼ 2:5 d ¼ 3:0 d ¼ 3:5

8� 8 10� 10 12� 12 14� 14 8� 8 10� 10 12� 12 14� 14 8� 8 10� 10 12� 12 14� 14

1 13.468 13.468 13.5259 13.5073 13.4961 13.4889 13.4947 13.4836 13.4782 13.4753 13.4803 13.4744 13.4722 13.4712

2 19.596 19.596 19.7681 19.7118 19.6799 19.6596 19.6479 19.6370 19.6285 19.6220 19.6316 19.6355 19.6335 19.6293

3 24.271 24.270 24.6027 24.4942 24.4324 24.3930 24.3719 24.3502 24.3334 24.3206 24.3419 24.3486 24.3439 24.3352

4 34.801 34.801 35.0813 35.0115 34.9620 34.9266 34.9278 34.8917 34.8686 34.8529 34.9068 34.8860 34.8712 34.8587
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Table 7

Comparison of frequency parameter x̂x ¼ xL2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q=E1h2

p
for a laminated square plate (graphite/epoxy, ½=/=	 /=/�)

/ Mode Qatu

(1991)

Messina and

Soldatos

(1999)

Present meshless

d ¼ 2:5 d ¼ 3:0 d ¼ 3:5

8� 8 10� 10 12� 12 14� 14 8� 8 10� 10 12� 12 14� 14 8� 8 10� 10 12� 12 14� 14

0� 1 1.4910 1.4910 1.4953 1.4940 1.4931 1.4926 1.4930 1.4922 1.4918 1.4916 1.4923 1.4917 1.4914 1.4913

2 1.6461 1.6461 1.6638 1.6581 1.6548 1.6527 1.6514 1.6503 1.6495 1.6488 1.6499 1.6503 1.6501 1.6496

3 3.4596 3.4597 3.4838 3.4780 3.4738 3.4707 3.4710 3.4679 3.4658 3.4643 3.4706 3.4684 3.4667 3.4653

4 4.5393 4.5394 4.6988 4.6461 4.6177 4.5996 4.5929 4.5757 4.5674 4.5620 4.5991 4.5828 4.5744 4.5689

5 6.4266 6.4266 6.5409 6.5153 6.4952 6.4812 6.4687 6.4587 6.4527 6.4480 6.4862 6.4725 6.4630 6.4569

6 6.4713 6.4713 6.5510 6.5182 6.5052 6.4970 6.4919 6.4876 6.4843 6.4816 6.4911 6.4877 6.4868 6.4850

7 7.1317 6.9702 7.1979 7.1791 7.1672 7.1592 7.1512 7.1478 7.1449 7.1424 7.1476 7.1481 7.1470 7.1451

8 9.0088 7.1317 9.0789 9.0482 9.0196 8.9950 8.9735 8.9437 8.9263 8.9144 8.9804 8.9620 8.9446 8.9312

15� 1 1.5234 1.5234 1.5317 1.5291 1.5276 1.5265 1.5266 1.5256 1.5251 1.5247 1.5254 1.5250 1.5248 1.5245

2 1.7881 1.7881 1.8038 1.7987 1.7958 1.7939 1.7930 1.7919 1.7911 1.7905 1.7916 1.7918 1.7915 1.7911

3 3.5251 3.5251 3.5544 3.5476 3.5426 3.5389 3.5392 3.5357 3.5333 3.5315 3.5365 3.5341 3.5325 3.5311

4 4.7418 4.7418 4.9016 4.8491 4.8205 4.8022 4.7966 4.7790 4.7704 4.7647 4.8025 4.7858 4.7771 4.7713

5 5.7179 5.7180 5.8014 5.7756 5.7607 5.7509 5.7470 5.7398 5.7352 5.7318 5.7441 5.7401 5.7369 5.7340

6 6.8856 6.8856 6.9924 6.9634 6.9446 6.9309 6.9202 6.9114 6.9048 6.8995 6.9263 6.9153 6.9084 6.9032

7 7.0915 7.0915 7.2061 7.1735 7.1526 7.1381 7.1351 7.1231 7.1150 7.1091 7.1298 7.1229 7.1174 7.1125

8 9.0493 7.4138 9.1478 9.0796 9.0350 9.0030 8.9870 8.9555 8.9375 8.9250 8.9960 8.9694 8.9505 8.9369

30� 1 1.6202 1.6202 1.6321 1.6284 1.6262 1.6248 1.6249 1.6235 1.6227 1.6221 1.6229 1.6224 1.6221 1.6218

2 2.0784 2.0785 2.0991 2.0924 2.0886 2.0861 2.0854 2.0838 2.0826 2.0817 2.0832 2.0831 2.0826 2.0821

3 3.7115 3.7115 3.7550 3.7444 3.7370 3.7316 3.7325 3.7277 3.7242 3.7216 3.7264 3.7237 3.7216 3.7198

4 5.0517 5.0517 5.1242 5.1024 5.0891 5.0803 5.0793 5.0726 5.0677 5.0642 5.0729 5.0712 5.0686 5.0659

5 5.0707 5.0707 5.2269 5.1796 5.1509 5.1319 5.1363 5.1158 5.1041 5.0962 5.1365 5.1187 5.1077 5.1001

6 7.0800 7.0800 7.2368 7.1987 7.1712 7.1504 7.1380 7.1241 7.1134 7.1047 7.1310 7.1188 7.1101 7.1030

7 7.6870 7.6870 7.9216 7.8502 7.8083 7.7801 7.7741 7.7483 7.7332 7.7225 7.7702 7.7486 7.7364 7.7275

8 8.9317 8.6761 9.1592 9.0876 9.0382 9.0014 8.9888 8.9579 8.9369 8.9209 8.9925 8.9608 8.9406 8.9254

45� 1 1.6894 1.6894 1.7017 1.6980 1.6957 1.6942 1.6945 1.6930 1.6921 1.6915 1.6921 1.6915 1.6911 1.6908

2 2.2397 2.2397 2.2660 2.2575 2.2525 2.2493 2.2487 2.2465 2.2450 2.2439 2.2457 2.2454 2.2448 2.2441

3 3.8250 3.8250 3.8738 3.8618 3.8534 3.8473 3.8485 3.8435 3.8396 3.8365 3.8420 3.8390 3.8366 3.8345

4 4.6812 4.6812 4.7538 4.7321 4.7187 4.7098 4.7089 4.7021 4.6971 4.6934 4.7015 4.7006 4.6983 4.6956

5 5.1973 5.1973 5.3473 5.3054 5.2777 5.2586 5.2705 5.2486 5.2346 5.2252 5.2671 5.2486 5.2361 5.2272

6 7.2344 7.2345 7.4337 7.3887 7.3552 7.3297 7.3176 7.2997 7.2861 7.2752 7.2991 7.2868 7.2772 7.2692

7 8.6974 8.6974 9.0806 8.9594 8.8905 8.8453 8.8367 8.7927 8.7695 8.7539 8.8276 8.7905 8.7701 8.7568

8 8.7855 8.7855 9.1078 9.0131 8.9520 8.9082 8.8894 8.8566 8.8346 8.8174 8.8880 8.8564 8.8357 8.8201
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of rectangular planform. The frequency parameter x
 used here is defined as x
 ¼ xL2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q=E1h2

p
and the

material properties are taken as follows: E1 ¼ 138 GPa, E2 ¼ 8:96 GPa, G12 ¼ 7:1 GPa, and m12 ¼ 0:3.
Figs. 6 and 7 present the frequency results for panels with subtended angle of h0 ¼ 30� and four-layer

symmetric and anti-symmetric lamination schemes, respectively. For the SSSS case, the fundamental

Fig. 2. Convergence characteristics of the frequency parameter x
 (mode 1) with the particle distribution for a square cylindrical panel

(L=s ¼ 1, R=h ¼ 200).

Fig. 3. Convergence characteristics of the frequency parameter x
 (mode 2) with the particle distribution for a square cylindrical panel

(L=s ¼ 1, R=h ¼ 200).
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frequencies of the panel first increase with the lamination angle / until it reaches a maximum at / ¼ 75�.
Subsequently, as / is increased further, the frequencies decrease. For the CFFF case, the fundamental

frequencies generally decrease with the increase of the lamination angle /. In the case of the FFFF panel,

similar trend to that of the SSSS panel is observed. Here however, the maximum frequencies do not occur at

ω

Fig. 4. Convergence characteristics of the frequency parameter x
 (mode 3) with the particle distribution for a square cylindrical panel

(L=s ¼ 1, R=h ¼ 200).

ω

Fig. 5. Convergence characteristics of the frequency parameter x
 (mode 4) with the particle distribution for a square cylindrical panel

(L=s ¼ 1, R=h ¼ 200).
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similar / for the symmetric and anti-symmetric lamination schemes. For the symmetric scheme, maximum
frequency occurs at / ¼ 53� while for the anti-symmetric scheme, maximum frequency occurs at / ¼ 48�.
Generally, between the three boundary condition cases, the SSSS case achieves the highest fundamental

frequency for any lamination angle /.
Figs. 8 and 9 show the corresponding results for the cases where h0 ¼ 60�. For the SSSS case, the

maximum frequency occurs at / ¼ 35� for the symmetric scheme, and at / ¼ 45� for the anti-symmetric

Table 8

Convergence characteristics of the frequency parameter x
 ¼ xL2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12qð1	 m2Þ=Eh2

p
for an isotropic free (FFFF) cylindrical panel

(L=R ¼ 0:5, R=h ¼ 200, L=b ¼ 1)

Mode Particle distribution d ¼ 2:0 d ¼ 2:5 d ¼ 3:0 d ¼ 3:5

1 6� 6 14.2904 13.7562 13.6506 13.6039

8� 8 13.8433 13.6324 13.5889 13.5684

10� 10 13.7083 13.5946 13.5691 13.5576

12� 12 13.6516 13.5778 13.5606 13.5535

14� 14 13.6222 13.5687 13.5562 13.5516

2 6� 6 27.4271 22.7185 22.3281 22.1904

8� 8 24.4902 22.3144 22.1276 22.0577

10� 10 23.4615 22.1644 22.0501 22.0262

12� 12 22.9711 22.0912 22.0131 22.0093

14� 14 22.6920 22.0494 21.9923 21.9966

3 6� 6 39.7523 35.5469 35.0533 34.9786

8� 8 37.0571 35.0997 34.8694 34.8056

10� 10 36.1220 34.9361 34.7891 34.7622

12� 12 35.6727 34.8526 34.7472 34.7388

14� 14 35.4131 34.8025 34.7226 34.7223

4 6� 6 52.6900 50.0426 49.3549 49.1681

8� 8 50.7642 49.2905 48.9830 48.9210

10� 10 50.0064 49.0604 48.8801 48.8577

12� 12 49.6282 48.9575 48.8350 48.8283

14� 14 49.4072 48.9003 48.8100 48.8100

Table 9

Convergence characteristics of the frequency parameter x
 ¼ xL2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12qð1	 m2Þ=Eh2

p
for an isotropic (SSSS) cylindrical panel

(L=R ¼ 0:5, R=h ¼ 200, L=b ¼ 1)

Mode Particle distribution d ¼ 2:0 d ¼ 2:5 d ¼ 3:0 d ¼ 3:5

1 6� 6 69.6968 60.5406 59.1735 59.2010

8� 8 64.5443 59.5386 58.7815 58.7346

10� 10 62.5840 59.2221 58.6992 58.6670

12� 12 61.5691 59.0788 58.6883 58.6735

14� 14 60.9482 59.0021 58.6970 58.6952

3 6� 6 119.0492 110.9711 105.7813 103.7097

8� 8 117.2338 105.3944 102.2004 102.0482

10� 10 116.3624 103.3382 101.0083 101.2149

12� 12 115.1580 102.2171 100.4302 100.6841

14� 14 111.8569 101.5218 100.1091 100.3482
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scheme. For the CFFF case, unlike that observed in Figs. 6 and 7, the frequencies here do not generally
decrease with increased /. Here, maximum frequency occurs at / ¼ 30� for both the symmetric as well as

the anti-symmetric schemes. Finally, for the case of the FFFF panel, maximum frequency is observed at

/ ¼ 70� for the symmetric scheme, and for the anti-symmetric scheme, at / ¼ 65�. As are Figs. 6 and 7,

results in Figs. 8 and 9 again show that of the three boundary condition cases considered, the SSSS case

generally generates the highest fundamental frequency for any lamination angle /.

ω
∗

φ

Fig. 6. Variation of frequency parameter x
 with lamination angle / of a symmetric four-layered cylindrical panel ½/ 	 /=	 /=/�
(h0 ¼ 30�, R=h ¼ 200, L=s ¼ 1).

∗

φ

ω

Fig. 7. Variation of frequency parameter x
 with lamination angle / of an anti-symmetric four-layered cylindrical panel

½/=	 /=/=	 /� (h0 ¼ 30�, R=h ¼ 200, L=s ¼ 1).

178 X. Zhao et al. / International Journal of Solids and Structures 40 (2003) 161–180



4. Conclusions

This paper dealt with the free vibration of composite laminated cylindrical panels using two-dimensional

reproducing kernel particle approximates. The mathematical formulation for this MFA has been presented.

The effects of particle distribution and the size of the domain of influence, on convergence characteristics

were investigated. The accuracy of the approach has been validated via extensive comparisons with

available published results, with very good agreement observed. The effects of boundary conditions and

lamination angles in symmetric and anti-symmetric schemes, on the fundamental frequencies of the panels
were also examined in detail. It was found that the effects of the lamination scheme on the frequencies of the

panels were different for each of the different boundary conditions considered.

ω
∗

φο

Fig. 8. Variation of frequency parameter x
 with lamination angle / of a symmetric four-layered cylindrical panel ½/=	 /=	 /=/�
(h0 ¼ 60�, R=h ¼ 200, L=s ¼ 1).

ω
∗

φο

Fig. 9. Variation of frequency parameter x
 with lamination angle / of an anti-symmetric four-layered cylindrical panel

½/=	 /=/=	 /� (h0 ¼ 60�, R=h ¼ 200, L=s ¼ 1).
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